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MHD determines the plasma equilibrium,
and the linear and non-linear stabillity.

“MHD represents the simplest self-consistent model describing the macroscopic equilibrium

and stability properties of a plasma.”

“The model describes how magnetic, inertial and pressure forces interact within an ideal
perfectly conducting plasma in an arbitrary magnetic geometry.”

J.P. Freidberg, Ideal Magnetohydrodynamics, Plenum Press, New York, 1987

Equilibrium
« Grad-Shafranov, VMEC, NSTAB, IPEC, . .

\

. Reconstruction, e.g. EFIT, V3FIT, STELLOPT

 Experimental design, e.g. ITER, W7-X
Stabllity

 Kink

« Ballooning

« Peeling ballooning, e.g. ELMs, ELITE, . ..

Transport
« Neoclassical
e  Turbulent

Require solution to Vp = j x B with
1) nested magnetic surfaces, and
2) smooth profiles.

This talk: given p and e.g. ¢, find B.

J




Problem: solutions to force balance with nested surfaces
have a non-analytic dependence on 3D boundary.

Breakdown of perturbation theory:
Following Rosenbluth, Dagazian & Rutherford, [Phys. Fluids 16, 1894 (1973)]

“ .. the standard perturbation theory approach .. is not applicable here due to the

singular nature of the lowest order step function solution for &” b
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Equilibrium and perturbed equations:
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“However, since L is a singular operator .. this equation cannot, in general, be solved, ..”

“we must abandon the perturbation theory approach..”

The singularity also affects Newton iterative solvers: x;411 = x; — VF ! . F[x;]



Problem: solutions to force balance with nested surfaces
have singularities in the parallel current-density.

Vp=jxByieldsj; = B X Vp/BQ. j is current-density, current = fj - ds.
S
Write j=cB+j,, V:j=0yields [B-Vo=-V-j, (1)
B = VY x VO + ¢+ V(x Vi
Nested flux surfaces allows (1, 0, () s.t. V9B -V = O¢ + ¢ Oy
VB -V( = 1

Fourier, o = Z T (10)€™077C) Eqn(1) becomes | (¢m — 1), = i(vIV-i)mmn | (2)

m.n(2)p (x
Resonant, parallel current-density : 0, ,, = Gm.n(2) P'(2) + Apin Omon(x), where z =¢—n/m.

(. )
g {E _/ TV

Pfirsch-Schliiter 6-function



The J-function current-density is integrable, e.g.

+00 x
f(x)o(x)dx = f(0), / 0(x)dxr = H(x) = Heaviside step function, xtH" = 0,

— OO

and is an acceptable mathematical idealization of localized currents.

thin wire, finite conductivity,

total current = I
finite cross-sectional area = a
current-density j = I/a zero-width wire, infinite conductivity,

total current = I
zero cross-sectional area — 0
current-density j — I1d(x)

B = /JXBPdU
V T
L >a /I(S(X)Xr
%

r3

dv

Approximating a localized current-density by a o-function current density

1. is acceptable fora macroscopic physical model that assumes infinite conductivity, and
2. I1s mathematically-tractable (one just needs to accommodate discontinuous solutions).

Net current through cross-section / j-ds = / dy [dO \/gj-V(
S

+€ 27

— / d:z:/d@ Apn O () 010 /g B . V(¢
—e€ 0

JiB V(1 = 0

1.e. no discontinuity in rotational-transform



Problem: the pressure-driven 1/x current density gives
Infinite parallel currents through certain surfaces.

/
Parallel current-density J| — Z [gm,np + Am,ném,n(:c)] elimi—inC) g
T

m,n

/dap d9 /g - V¢

o W/mg pl _
/d:{:/ do ""”";’L e!mi=n¢) /g B . V(¢
€ 0

2 0 1

> /
= Omn — [ dz—
L gm, ’Opom/E x

2
= gmnoPp— (Ind —Ine) — oo as € — 0.
m

Parallel current through cross-section / Jj - ds
S
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The problem is NOT a lack of numerical resolution.
Is a dense collection of alternating infinite currents physical?

Shown below is the total current through elemental transverse area, for different (m,n) perturbations

N roc T




If there are rational surfaces, then we must choose:

1. flatten pressure near rationals, smooth pressure; %
2. flatten pressure near rationals, fractal pressure; %

3. flatten pressure near rationals, discontinuous pressure; v’
4. restrict attention to “healed” configurations [Weitzner, PoP 21, 022515 (2014); Zakharov, JPP 81, 515810609, (2015)]

1. Locally-flattened, smooth pressure:

if (i) p'(z)=0if |zt —n/m| < emn, ¥Y(n,m),

and  (i#i.) p’(x) is continuous, then p’(z) =0, Vz. No pressure!

1.0

continuous,

0.8
fractal pressure

2. “Diophantine” pressure profile: e.g. from KAM theory ;|

, 1, if|lz—n/m|>r/mF V(n,m), eg. r=02, k=2, 0.4 |
p(z) = : k |
0, if|lz—n/m|<r/m” d(n,m), 02} |

0.0 ! | ! ! )

0.0 0.2 0.4 0.6 0.8 1.0

p’(x) is discontinuous on an uncountable infinity of points,

“The function p is continuous but its derivative is pathological.” Grad, Phys. Fluids 10, 137 (1967)]

discontinuous,
stepped pressure

3. “Stepped” pressure profile: v

Existence of Three-Dimensional Toroidal MHD Equilibria

with Nonconstant Pressure
[Bruno & Laurence, Commun. Pure Appl. Math. 49, 717 (1996)]

Culmination of long history of “waterbag” or “sharp-boundary” equilibria:
[Potter, Methods Comp. Phys., 16, 43 (1976); Berk et al., Phys. Fluids, 29, 3281 (1986); Kaiser & Salat Phys. Plasmas 1, 281 (1994)]



Relaxed MHD <« Multi-Region relaxed MHD — Ideal MHD

[Taylor, Phys. Rev. Lett. 33, 1139 (1974)] [Dewar, Hole, Hudson, et al., circa 2006] [Kruskal & Kulsrud, Phys. Fluids 1, 265 (1958)]

Ny =1 Relaxed MHD

B2 0B =V X 0A is arbitrary in R
F = /(L+—>dv —E/A-de, (0B =V x (£ xB) on OR)
r\Y—1 )} 2 Jr J

2
+ constrained flux

A

"

enerqgy helicity

0F = 0, p=py, VxB=uB inR;

Ny = oo Ideal MHD

B2 S i
r = / p B . 0B Vx(&le)mR
» \7—1 2 (fluxes & helicity conserved)

0F = 0, p=p ), Vp=jxB in R.



Relaxed MHD <« Multi-Region relaxed MHD — ldeal MHD

[Taylor, Phys. Rev. Lett. 33, 1139 (1974)] [Dewar, Hole, Hudson, et al., circa 2006] [Kruskal & Kulsrud, Phys. Fluids 1, 265 (1958)]
Ny =1 Relaxed MHD
9 0B =V X 0A is arbitrary in R

p b 7

F — —1—|—7 dv —5 A'Bd’U, (5B:V><(£><B)On3R)
YR 1 - y IR -~ _ + constrained flux

energy helicity

0F = 0, p=py, VxB=uB inR;

Ny <oo MRx MHD

Ny 3?2 | 0B; =V X 0A, is arbitrary in R;
F o= > {/ (Ll+7>dv —%/A-de}, 0B; = V x (& x B;) on IR,
i=1 Ri \V — Ri + constrained fluxes in R;
B2
0F = 0, p=p;, VXB=pu;B in R;; [[p+7“20acr08867€7;;

Stepped Pressure Equilibrium Code

[Hudson, Dewar et al., Phys. Plasmas 19, 112502 (2012)]

Ny = oo Ideal MHD

B2 S i
r = / p B . 0B Vx(&le)mR
» \7—1 2 (ﬂuxes & helicity conserved)

0F = 0, p=p ), Vp=jxB in R.



Relaxed MHD <« Multi-Region relaxed MHD — ldeal MHD

[Taylor, Phys. Rev. Lett. 33, 1139 (1974)] [Dewar, Hole, Hudson, et al., circa 2006] [Kruskal & Kulsrud, Phys. Fluids 1, 265 (1958)]
Ny =1 Relaxed MHD
9 0B =V X 0A is arbitrary in R

p b 7

F — —1—|—7 dv —5 A'Bd’U, (5B:V><(£><B)On3R)
YR 1 - y IR -~ _ + constrained flux

energy helicity

0F = 0, p=py, VxB=uB inR;

Ny <oo MRx MHD

Ny 3?2 | 0B; =V X 0A, is arbitrary in R;
F o= > {/ (Ll+7>dv —%/A-de}, 0B; = V x (& x B;) on IR,
i=1 Ri \V — Ri + constrained fluxes in R;
B2
0F = 0, p=p;, VXB=pu;B in R;; [[p+7“20acr08867€i;

— p(),Vp=jx B as Ny — o0,

[Dennis, Hudson et al., Phys. Plasmas 20, 032509, 2013]

Ny = oo Ideal MHD

B2 S i
r = / p B . B Vx(&:XB)mR
» \7—1 2 (ﬂuxes & helicity conserved)

0F = 0, p=p ), Vp=jxB in R.



Nv=2, “"double-Taylor” state with transport barrier;
MRxMHD explains self-organization of RFP into helix.

EXPERIMENTAL RESULTS
Overview of RFX-mod results natu @  August, 2009

physics

P. Martin et al., Nucl. Fusion, 49 104019 (2009)

Fig.6. Magnetic flux surfaces in the transition from a QSH state . . to a fully developed SHAX state . .
The Poincare plots are obtained considering only the axisymmetric field and dominant perturbation "

o G — —~ - o
~

NUMERICAL CALCULATION USING STEPPED PRESSURE EQUILIBRIUM CODE
Minimally Constrained Model of Self-Organized Helical States in Reversed-Field Pinches
G. Dennis, S. Hudson et al. Phys. Rev. Lett. 111, 055003 (2013)

Excellent qualitative agreement between numerical calculation and experiment.



Nv=3, compute the d-function current density,
3D ideal-MHD solutions require infinite shear!

Cartesian, slab geometry with an (m,n) = (1,0) resonantly-perturbed boundary

i. Ny =3 MRxMHD calculation, no pressure, #(1) given discretely,

ii. take limit Ay = 2P, ¢; =

iii. shear = A¢/Atp = 2P,

—LUa/Q, bi+1 — +Ia/2,

MUST HAVE § > «, i.e. infinite-shear

iv. island forced to vanish = island-shielding

v. resonant 0,, n,-function current-density = tangential discontinuity in B.

Analytic verification with SPEC

constant perturbed boundary =

fully “relaxed” island, -

no singular currents.

fully “shielded” state,
no island.

[Loizu, Hudson et al., Phys. Plasmas 22, 022501 (2015)]



Nv=co, compute the 1/x current-density,
3D ideal-MHD solutions require infinite shear!

Cartesian, slab geometry with an (m,n) = (1,0) resonantly-perturbed boundary

1. Ny = large MRxMHD calculation, stepped pressure ~ smooth pressure,

ii. take limit Ay = 2P, +; = —x%/2, ;i1 = +x%/2,

iii. shear = A¢/Ap = 2P, | MUST HAVE 8 > q, i.e. infinite-shear

iv. island forced to vanish = island-shielding

v. resonant p’/x current-density = tangential discontinuity in B.

Analytic verification with SPEC
o

[Loizu, Hudson et al., Phys. Plasmas 22, 022501 (2015)]



Infinite shear = discontinuous rotational-transform:
Introduce new class of solutionsto Vp =] x B

1. Cylindrical geometry with an (m,n) = (2, 1) resonantly-perturbed boundary

: 0 discontinuous rotational-transform
1. p=0, 6(r) = b0 — 6172 £ A,
.. 0.8F
11. compute cylindrically symmetric equilibrium
dp 1d 2 2 2 2
— 4+ —— |B.(1++¢77) | +7re“B. =0 6 T ey
dr  2dr [ = )} © 0-6

111. compute linearly perturbed equilibrium:

0.4
ﬁo[ﬁ] = —5J[£] XBQ—jO X5B[£] =0 \
0.2F

for At > 0, Lo is non-singular,

iv. solved analytically 0.0 - . . ,
0.0 0.2 0.4 0.6 0.8
d dg ;
— | — 0
dr (f d'r) 95

V. for At > Atmin,0§/0r < 1, non-overlapping perturbed surfaces

Analytic verification with SPEC

for A+ > 0, £ is continuous and smooth,

for A+ — 0, recover step-function solution

RMP penetrates into the core,

even for ideal-MHD. =
2. Comparison with SPEC
1. construct large Nyy MRxMHD calculation,
.. 0.0 0.2 0.4 0.6 0.8
11. “linearized” SPEC calculation: ||€..0ct — Elinear!|| ~ N‘;l - /a

111. nonlinear SPEC calculation: ||€;,car — Enontinear]

[Loizu, Hudson et al., Phys. Plasmas 22, 090704 (2015)]



Infinite shear = discontinuous rotational-transform:
Introduce new class of solutionsto Vp =] x B

1. Cylindrical geometry with an (m,n) = (2, 1) resonantly-perturbed boundary

] L . .
i = po(l = 2/ 2 + 74) ) 6(r) = ¢ — 6172 + A, -..,b(‘:_ll\scont|nuous rotational-transform
. 08k *«.  Smooth pressure
11. compute cylindrically symmetric equilibrium o
d 1 d s
op 4+ —— [Bz(l—i—bQT’Qﬂ +7re?B7 =0 0.6k T
dr ~ 2dr \I A
: e s 1At
111. compute linearly perturbed equilibrium: 0.4k s
Lol€] =Vop|—djl&€] x Bo —jo x B[] =0 .
0.2F \\
for At > 0, L is non-singular, %o
iv. solved analytically 0.0 L ' L T TV
0.0 0.2 0.4 0.6 0.8 1.0
d d§ r
d—(fd—)—g£:0 o
" r 3.5—— Analytic verification with SPEC

V. for At > Atmin,0§/0r < 1, non-overlapping perturbed surfaces

3_

for A+ > 0, £ is continuous and smooth,
for A+ — 0, recover step-function solution 297
Perturbation amplified by pressure 2

near and inside “resonant” surface 1.5/

2. Comparison with SPEC 1
: _ 0.5}
1. construct large Nyy MRxMHD calculation,
. 0 | At = 0.001
11. “linearized” SPEC calculation: ||€..act — &linear|| ~ N‘;l 0 0.2 0.4 0.6 0.8 1
o r/a

~ €

111. nonlinear SPEC calculation: ||€;,car — Enontinear]

[Loizu, Hudson et al., Phys. Plasmas 23, 055703 (2016)]



Now, Including pressure and an island . . .
amplification and penetration of the RMP Is still present.

1. Now, include a “relaxed” region,

1. A = toroidal flux in relaxed region.

11. A¢ = jump in transform across relaxed region.

so that an island is allowed to form.

Discontinuous transform Continuous transform
with no island (ideal) with island (tearing)
3.5 . w ' ' 3r + PB=0% wa=0.1%
3l | + SPEC + B=2% wa=01%
—— Newcomb eR1 ¥ B=2%,wa=1%
2..
ﬁ\ﬁm ;5 1.5}
| ‘ ':; r\-—W“n-uo +®
0.5}

0 02 04 0.6 0.8 1

0.6 0.8 1
r/a



The two classes of general, relevant, tractable 3D MHD
equilibria are:

1. Stepped-pressure equilibria,

i.
ii.
iii.
1v.

V.

Bruno & Laurence states

extrema of MRxMHD energy functional
transform constrained discretely
pressure discontinuity at ¢ = irrational

allows for islands, magnetic fieldline chaos

2. Stepped-transform equilibria,

1.
11.
111.
1v.
V.

3. Or,
i

11.

Q. How does a state with continuous transform “ideally evolve”
into a 3D state with discontinuous transform?
implications for ideal stability if no accessible 3D state exists?

introduced by Loizu, Hudson et al.
extrema of ideal MHD energy functional
transform (almost) everywhere irrational
arbitrary, smooth pressure

continuously-nested flux surfaces

a combination of the above.

each can be computed using SPEC

suggests VMEC, NSTAB, should be modified
to allow for discontinuous transform

p

pressure

transform

142

155




Ongoing development/applications of SPEC

= Stepped Pressure Equilibrium Code

1. RECENT code improvements:

i.

11.
111.

1V.

V.

2. ONGOING physics applications

11.
1ii.
1V.

V.

3. Seeking collaborators, code-users
please email shudson@pppl.gov, re: SPEC

DIID: SPEC cf. VMEC

finite-elements replaced by Chebshev polynomials
L,M,N

e.g. A= Z (1. m nT1(s) cos(mO — nC)VEO + Br.m nTi(s) cos(mb — n)V{]

l,m,n

i
a <
- , P

linearized equations

=
T

™ H
*

free-boundary

X b

Cartesian, cylindrical, toroidal geometry

detailed online documentation,
http://w3.pppl.gov/ shudson/Spec/spec.html

easy-to-use, easy-to-edit, graphical user interface

W7-X vacuum verification calculations, OP1.1 [completed]

non-stellarator symmetric, e.g. DIIID, [completed]

free-boundary, [completed]

including flow, anisotrophy, . . [under construction]

MRxMHD linear stability, [under construction]

W7-X
SPEC cf. Biot Savart

B -n+#0
on dDomain



Back up slides



Now, Including pressure and an island . . .

amplification and penetration of the RMP Is still present.

1. Now, include a “relaxed” region,

2. SPEC calculations indicate that

3. Precise comparison of SPEC cf. tearing mode theory pending.
8= 0%, At = 0.050 > Atyin

so that an island is allowed to form.

1.4r

1.21

1.

11.

1.

11.

A1y = toroidal flux in relaxed region.

A+ = jump in transform across relaxed region.

The perturbation still penetrates.

The perturbation is still amplified by pressure.

3
s
o
3
o
3
)
< @
A
-

0.2

0.4

r/a

0.6

0.8

& (B )

1.8f
161
1.4+
1.2f
1t
0.8r
0.6
0.4r
02F «%

0

-0.2r

b= O%’ At = 0.001 > Atpin

0.1 02 03 04 05 06 07 08
r/a

0.9

+ B=0% wa=0.1%

+ B=2% wa=0.1%
¥ B=2%,wa=1%

0.6 0.8 1



Necessary condition for non-overlapping of perturbed surfaces
Existence of non-linear solutions

1. Condition for non-overlapping perturbed surfaces

1.0F
o€
or

Discontinuously-perturbed
flux surfaces overlap!

<1

max

1.0

2. An asymptotic analysis near the rational surface
gives the sine-qua-non condition (an indispensable condition, element, or factor; something essential)

1
10 7
At > Atpin, where Atpin = 2608, ®® 0606 0o ’ 23
o0 00 o or
(analysis for cylindrical, zero-3; general result probably similar) ® 0 O o
] o @ oo | 01
-4 ’
10 ® ® o,
) ’
3. If this condition is violated, At ® e 10.01
non-linear solutions do not exist. e o ,/
: , oo .
1. Shown is &', as computed 1073 ,°  non-existence 0.001
using non-linear SPEC calculations, .,’ of solutions
as a function of (e, A¢) ®
ii. SPEC fails in ideal-limit, i.e. Ny — oo, P L L y
10 10 € 10 10

when At < Atpmin

[Loizu, Hudson et al., Phys. Plasmas 22, 090704 (2015)]



Amplification and penetration as stability boundary is approached

1. Can define a measure of

— 58/67

“Amplification”

Armp

“Penetration” Prmp

2. A necessary condition for interchange stability in a screw pinch

is given by the Suydam criterion,

=1—1r./rs, where £(r,) =&/e

3.5 T

68 3]

25}
where € = boundary deformation

2p' 2 ) 1 0

Do = — —.
o ('r'ng’Q < 4

3. Amplification and penetration of RMP fantastically increased as stability limit approached.

A A= 0005 0.5~ A =o005
35 [0 A+ = 0.001 o : A+=0.001 %
* 0.4}
3r f *
©)
2.51 * | 0.3} o
o Interchange Qo 0 * Interchange
<E§ 2r * unstable - D_E OO unstable
*
(Dg > 0.25)_ 0.0l o ) (Dg>0.25),
0 - ' " '
0 0.005 0.01 0.015 0 0.005 0.01 0.015

[Loizu, Hudson et al., Phys. Plasmas 23,

055703 (2016)]



Discontinuous transform solution cf.

“Tearing” solution

g,

Discontinuous transform
with no island (ideal)
3.9 I : l :

3t 1 + SPEC
—— Newcomb

Continuous transform
with island (tearing)

+ B
+ B
* B

0%, w/a =0.1%
2%, w/a=0.1%
2%, wla=1%

P L

0.8 1




SPEC allows  discontinuous profiles: exact agreement
VMEC  assumes smooth profiles: approximate agreement

1. VMEC assumes smooth profiles

and smooth profiles imply discontinuous displacement

2. but, VMEC enforces nested flux surfaces

nested flux surfaces in 3D imply o < 1 displacement from 2D
r

and this is consistent only with discontinuous transform with A¢ > Atpmin
3. Empirical study (i.e. radial convergence) shows that

VMEC qualitatively reproduces self-consistent, perturbed solution

interpretation: finite radial resolution implies an “effective” At ~ ¢'h, where h = 1/N 7
35 . . . . 16 - — .

+ SPEC . 1.4F
—— Newcomb

3_

1.2

25"
1+
2 L
JJﬁm
o 0.8
15}
0.6}
1+
0.4}
05}
0.2k
O" L 2 — I I O = | 1 : 1 1
0 : : : 0.8 1 0 0.2 0.4 0.6 0.8 1

r/a

[Loizu, Hudson, ..., Lazerson, ..., Phys. Plasmas 23, 055703 (2016)]




Given continuous, non-integrable B, B.Vp = 0 implies p is fractal.
Given fractal p, what is continuous, non-integrable B ?

e Defn. An equilibrium code computes the magnetic field consistent with a given p and e.g. given +.
e Theorem. The topology of B is partially dictated by p.

< Where p’ # 0, B-Vp = 0 implies B must have flux surfaces.

— Where p’ = 0, B can have islands, chaos and/or flux surfaces.

TRANSPORT: given B, solve for p.
1. Given general, non-integrable magnetic field, B =V x [V — x (1, 0, () V(]
i. fieldline Hamiltonian: x(+,6,C) = xo(¥) + 2_,.0 Xm.n ()t m0=n¢)
2. KAM theorem: for suff. small perturbation, “sufficiently irrational” flux surfaces survive

1. if ¢ satisfies a “Diophantine” condition, |¢ — n/m| > r/m” V(n,m), excluded interval about every rational

11. need e.g. Greene’s residue criterion to determine if flux-surface, exists; lot’s of work; 1.0

3. With B - Vp = 0, i.e. infinite parallel transport, pressure profile must be fractal:

/(o) = 1, if|le—n/m|>r/mF, V(n,m), eg. r=02 k=2,
P = o, if ¢ —n/m| <r/mF, 3I(n,m),

0.2

p’(x) is discontinuous on an uncountable infinity of points; impossible to discretize accurately; 0.0

EQUILIBRIUM: given p, solve for B.

. Given a fractal p’, how can the topology of B be constrained to enforce B - Vp = 07
p

i. e.g. if p(¢)) is continuous and smooth, nowhere zero, then B must be integrable, i.e. xm n(¥) =0

ii. if p’(v) is fractal, then what are xm n(¥) =7



Convergence studies using VMEC
[Lazerson, Loizu et al., Phys. Plasmas 23, 012507 (2016)]

Resonant Perturbation p(m=2,n=1) Non-axisymmetric Toroidal Current Density

i . 1200, |
—64 Surfaces | —64 Surfaces
128 Surfaces ! 1000 286 Surfaces
20.8. —256 Surfaces ! 15 Sintacea FIG.. 2. Profile of the perturbed p har-
g 51% Sgrfﬁces 800 —;gig gu:ffaces monic (left) and the m=2n=1 com-
£ —1024 Surfaces | — uriaces id: 1
5 2048 Surlaces - q=2 p?nent of thfz toroidal current denm.ty
%0-6' - g=2 = 600! (right) showing dependence on radial
&= = resolution at fixed shear. Boundary
0.4 =~ 400| perturbation 1 x 10™* of minor radius.
E The g =2 surface is located at s=0.5
= =N | (r/a ~0.7) in this plot. Note that the
. = 0 b | toroidal current density includes a
: Jacobian factor.
0 - - - - - -200 : : e o -
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Minor Radius (r/a) Minor Radius (r/a)
VMEC vs. Newcomb VMEC Fit A« Dependence
1 . . —— 0.8 - - .
"'.-'
pits o
o 17 .
<08 / 1
é 12 o) FIG. 5. Comparison of VMEC response
8 0.6 ~ (solid) to Loizu’s solution to Newcomb’s
:_;' ﬂ 14l ) | equation (dotted) (left) and the effective
a me ' A1 necessary to fit each curve (right).
E 0.4 = 16 o _ The colors are the same as those in
T ' Figure 2, and NS refers to the number of
E 0.2 18 (0] radial grid points.
O
— ? e
0 0.2 0.4 0.6 0.8 1 -5 S 3 3.5

Minor Radius (r/a) log,, ,(NS)



Published SPEC convergence / verification calculations

O logy,l6j°l Ol log,,l6j°l O log,,l6j°l
-2+ -2+ —2F
4+ —4 —4
-6 —6F A -6
—8+ -8t B -8}
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FIG. 2. Scaling of components of error, dj = j — uB, with respect to radial resolution. The diamonds are for the n =3 (cubic) basis functions, the triangles are
for the n =5 (quintic) basis functions. The solid lines have gradient —3, —2, and —2, and the dotted lines have gradient —5, —4, and —4.
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FIG. 2. Convergence of the error between linear and nonlinear SPEC equili-
bria as ¢, is decreased, and for different values of A+, ranging from 10™*

(upper curve) to 10~" (lower curve).
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FIG. 7. Pressure profile (smooth) from a DIIID reconstruction using STEL-
LOPT and stepped-pressure approximation. Also, shown is the inverse rota-

tional transform = safety factor.
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FIG. 6. Difference between finite M, N approximation to interface geometry,
and a high-resolution reference approximation (with M =13 and N =28),
plotted against Fourier resolution.
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FIG. 5. Convergence: the error (A) between the continuous pressure (VMEC)
and stepped pressure (SPEC) solutions are shown as a function of the number
of plasma regions N for the s = 1/4 SPEC interface. The dotted line shows the
zero-beta case (pg =0), and the solid line shows the high-beta case
(po = 16). The grey line has a slope —2, the expected rate of convergence.
These simulations were run on a single 3 GHz Intel Xeon 5450 CPU with the
longest (the N = 128 case) taking 10.1 min using 20 poloidal Fourier harmon-
ics and 768 fifth-order polynomial finite elements in the radial direction.



Early and recent publications

Hole, Hudson & Dewar,
Hudson, Hole & Dewar,
Dewar, Hole et al.,

Hudson, Dewar et al.,
Dennis, Hudson et al.,
Dennis, Hudson et al.,
Dennis, Hudson et al.,
Dennis, Hudson et al.,
Loizu, Hudson et al.,
Loizu, Hudson et al.,
Dewar, Yoshida et al.,
Loizu, Hudson et al.,

PoP, 2006 (theoretical model)

PoP, 2007 (theoretical model)

Entropy, 2008 (theoretical model)

PoP, 2012 (SPEC)

PoP, 2013 (MRxMHD — ideal as Nr —x)

PRL, 2013 (helical states in RFP = double Taylor state)

PoP, 2014  (MRxMHD+flow)

PoP, 2014  (MRxMHD+flow+pressure anisotrophy)

PoP, 2015 (first ever computation of 1/x & & current-densities in ideal-MHD)
PoP, 2015  (well-defined, 3D MHD with discontinuous transform)
JPP, 2015  (variational formulation of MRXMHD dynamics)
PoP, 2016  (pressure amplification of RMPS)

Recent and upcoming invited talks

Hudson, Dewar, et al.,, 2012
Dennis, Hudson, et al., 2013
Dennis, Hudson, et. al., 2013
Hole, Dewar, et al., 2014
Loizu, Hudson, etal.,, 2015
Loizu, Hudson, etal.,, 2015
Hudson, Loizu et al., 2016
Hudson, Loizu, etal., 2016
Loizu, Hudson, etal., 2016

International Sherwood Fusion Theory Conference
International Sherwood Fusion Theory Conference
International Stellarator Heliotron Workshop
International Congress on Plasma Physics
International Sherwood Fusion Theory Conference
APS-DPP

International Sherwood Fusion Theory Conference
Asia Pacific Plasma Theory Conference, 2016
Varenna Fusion Theory Conference



Compute the 1/x and s-function current densities in perturbed geometry
Self-consistent solutions require Infinite shear

Cartesian, slab geometry with an (m,n) = (1,0) resonantly-perturbed boundary

1. Ny =3 MRxMHD calculation, no pressure, +(1) given discretely,

ii. take limit Ay = 2P, ¢; = —2%/2, ;01 = +2%/2, shear = Ae /AP =z P | B> a |

111. island forced to vanish,

1V. resonant d,, »-function current-density appears as tangential discontinuity in B.

constant perturbed boundary — — — ——— e ———

P an ,,’_’—-'_ e I e T S e - T =

fully “relaxed” island, - e : ' ' ! i fully “shielded” state,
no singular currents. I e = O no island.
1 B — | E— | S— 1 1 1 1 1 | | 1 | 1 1 1 L 1 1 1 1

i. Ny = large MRxMHD calculation, stepped pressure =~ smooth pressure,
i take limit A = 28, 4 = —2/2, 6141 = 42 /2, énalytlc verification with SPEC
iii. island forced to vanish, 4l :

iv. resonant p’/x current-density appears as tangential discontinuity in B. .| 9;

[Loizu, Hudson et al., Phys. Plasmas 22, 022501 (2015)]



Nv=2 : "Double-Taylor” state with transport barrier;
MRXMHD explains self-organization of RFP into helix

EXPERIMENTAL RESULTS
Overview of RFX-mod results natu @  August, 2009

physics

P. Martin et al., Nucl. Fusion, 49 104019 (2009)

Fig.6. Magnetic flux surfaces in the transition from a QSH state . . to a fully developed SHAX state . .
The Poincare plots are obtained considering only the axisymmetric field and dominant perturbation "

_ -~ — -~ — "
~

NUMERICAL CALCULATION USING STEPPED PRESSURE EQUILIBRIUM CODE
Minimally Constrained Model of Self-Organized Helical States in Reversed-Field Pinches
G. Dennis, S. Hudson,et al. Phys. Rev. Lett. 111, 055003 (2013)

Excellent Qualitative agreement between numerical calculation and experiment
— this is first (and perhaps only?) equilibrium model able to explain internal helical state with two magnetic axes



In arbitrary, three-dimensional geometry,
“solutions” to Vo = J X B with smooth profiles and nested surfaces
are nonsense.

Z all perturbations> 1|/
m,n “ '

Dense collection of alternating infinite currents
IS not an acceptable solution.




